Original Article
The Role of Opioid-Induced Microbial Dysbiosis in Analgesic Tolerance
Volume 30,Issue 1,Pages 41-56
Meng-Hsun Hsieh1 , Chiao-Ming Chuang2 , Yen-Chin Liu MD2

1 Educational center, National Cheng Kung University Hospital, Tainan city, Taiwan.

2Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan

PDF

Outline

Abstract

The influence of opioids on the composition and balance of gut microbiota have gained increased attention recently. These alterations, known as opioidinduced dysbiosis (OID), are correlated with multiple disease states and, also, the development of antinociceptive tolerance. Pre-clinical studies have recognized the importance of gut microbiome in the formation of analgesic tolerance and, therefore, make these commensals a new therapeutic subject for attenuating opioid tolerance and reducing opioid demands. In this article, we reviewed the influence of OID on the development of tolerance and the its potential role as a novel therapeutic target.

Key Words

Fecal microbiota transplantation; Gut microbiota; Opioidinduced microbial dysbiosis; Opioid tolerance; Probiotics;



Download full text in PDF

References
1

Akbarali HI, Dewey WL.

The gut–brain interaction in opioid tolerance.

Curr Opin Pharmacol 2017;37:126-30.

CrossRef

2

Colvin LA, Bull F, Hales TG.

Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia.

The Lancet 2019;393:1558-68.

CrossRef

3

Mercadante S, Arcuri E, Santoni A.

OpioidInduced Tolerance and Hyperalgesia.

CNS Drugs 2019;33:943-55.

CrossRef

4

Martyn JAJ, Mao J, Bittner EA.

Opioid Tolerance in Critical Illness.

N Engl J Med 2019;380:365-78.

CrossRef

5

Pan ZZ.

Mechanisms of Opioid Tolerance.

Zhuo M, editor. Mol Pain. New York, NY: Springer New York; 2007, p. 413-22.

6

Roeckel LA, Le Coz GM, Gaveriaux-Ruff C, Simonin F.

Opioid-induced hyperalgesia: Cellular and molecular mechanisms.

Neuroscience 2016;338:160-82.

CrossRef

7

Chu LF, Angst MS, Clark D.

Opioid-induced Hyperalgesia in Humans: Molecular Mechanisms and Clinical Considerations.

The Clinical Journal of Pain 2008;24:479-96.

CrossRef

8

Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, et al.

Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation.

Mucosal Immunol 2016;9:1418-28.

CrossRef

9

Wang F, Meng J, Zhang L, Johnson T, Chen C, Roy S.

Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.

Sci Rep 2018;8:3596.

CrossRef

10

Zhang L, Meng J, Ban Y, Jalodia R, Chupikova I, Fernandez I, et al.

Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome.

Proc Natl Acad Sci U S A 2019;116:13523-32.

CrossRef

11

Acharya C, Betrapally NS, Gillevet PM, Sterling RK, Akbarali H, White MB, et al.

Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis.

Aliment Pharmacol Ther 2017;45:319-31.

CrossRef

12

Meng JJ, Banerjee S, Li D, Sindberg GM, Wang FY, Ma J, et al.

Opioid Exacerbation of Grampositive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization.

Sci Rep 2015;5:17.

CrossRef

13

Sharma U, Olson RK, Erhart FN, Zhang L, Meng J, Segura B, et al.

Prescription Opioids induce Gut Dysbiosis and Exacerbate Colitis in a Murine Model of Inflammatory Bowel Disease.

Journal of Crohn's and Colitis 2019. Doi: 10.1093/ecco-jcc/ jjz188.

CrossRef

14

Wang F, Meng J, Zhang L, Roy S.

Opioid use potentiates the virulence of hospitalacquired infection, increases systemic bacterial dissemination and exacerbates gut dysbiosis in a murine model of Citrobacter rodentiuminfection.

Gut microbes 2020;11:172-90.

CrossRef

15

Babrowski T, Holbrook C, Moss J, Gottlieb L, Valuckaite V, Zaborin A, et al.

Pseudomonas aeruginosa Virulence Expression Is Directly Activated by Morphine and Is Capable of Causing Lethal GutDerived Sepsis in Mice During Chronic Morphine Administration.

Ann Surg 2012;255:386-93.

CrossRef

16

Kang M, Mischel RA, Bhave S, Komla E, Cho A, Huang C, et al.

The effect of gut microbiome on tolerance to morphine mediated antinociception in mice.

Sci Rep 2017;7:42658.

CrossRef

17

Lee K, Vuong HE, Nusbaum DJ, Hsiao EY, Evans CJ, Taylor AMW.

The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence.

Neuropsychopharmacology 2018;43:2606-14.

CrossRef

18

Mirsepasi-Lauridsen HC, Vrankx K, Engberg J, Friis-Møller A, Brynskov J, Nordgaard-Lassen I, et al.

Disease-Specific Enteric Microbiome Dysbiosis in Inflammatory Bowel Disease.

Frontiers in Medicine 2018;5.

CrossRef

19

Durack J, Lynch SV.

The gut microbiome: Relationships with disease and opportunities for therapy.

The Journal of experimental medicine 2019;216:20-40.

CrossRef

20

Karlsson F, Tremaroli V, Nielsen J, Bäckhed F.

Assessing the Human Gut Microbiota in Metabolic Diseases.

Diabetes 2013;62:3341-9.

CrossRef

21

Alkasir R, Li J, Li X, Jin M, Zhu B.

Human gut microbiota: the links with dementia development.

Protein & cell 2017;8:90-102.

CrossRef

22

Saji N, Niida S, Murotani K, Hisada T, Tsuduki T, Sugimoto T, et al.

Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan.

Sci Rep 2019;9:1008.

CrossRef

23

Angelucci F, Cechova K, Amlerova J, Hort J.

Antibiotics, gut microbiota, and Alzheimer's disease.

J Neuroinflammation 2019;16:108.

CrossRef

24

Foster JA, McVey Neufeld K-A.

Gut–brain axis: how the microbiome influences anxiety and depression.

Trends Neurosci 2013;36:305-12.

CrossRef

25

Guo R, Chen LH, Xing C, Liu T.

Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential.

Br J Anaesth 2019;123:637- 54.

CrossRef

26

Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E.

Dysbiosis and the immune system.

Nature Reviews Immunology 2017;17:219-32.

CrossRef

27

De Gregori S, De Gregori M, Ranzani GN, Allegri M, Minella C, Regazzi M.

Morphine metabolism, transport and brain disposition.

Metab Brain Dis 2012;27:1-5.

CrossRef

28

Smith M.

Neuroexcitatory Effects Of Morphine And Hydromorphone: Evidence Implicating The 3-Glucuronide Metabolites.

Clin Exp Pharmacol Physiol 2000;27:524-8.

CrossRef

29

Klaassen CD, Cui JY.

Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

Drug Metab Dispos 2015;43:1505-21.

CrossRef

30

Hawksworth G, Drasar BS, Hili MJ.

Intestinal Bacteria And The Hydrolysis Of Glycosidic Bonds.

J Med Microbiol 1971;4:451-9.

CrossRef

31

Stain-Texier F, Sandouk P, Scherrmann J-M.

Intestinal Absorption and Stability of Morphine 6-Glucuronide in Different Physiological Compartments of the Rat.

Drug Metabolism and Disposition 1998;26:383-7.

CrossRef

32

Hewett K, Dickenson AH, McQuay HJ.

Lack of effect of morphine-3-glucuronide on the spinal antinociceptive actions of morphine in the rat an electrophysiological study.

Pain 1993;53:59-63.

CrossRef

33

Bian J-T, Bhargava HN.

Effects of morphine3-glucuronide on the antinociceptive activity of peptide and nonpeptide opioid receptor agonists in mice.

Peptides 1996;17:1415-9.

CrossRef

34

Ouellet DMC, Pollack GM.

Effect of prior morphine-3-glucuronide exposure on morphine disposition and antinociception.

Biochem Pharmacol 1997;53:1451-7.

CrossRef

35

Lipkowski AW, Carr DB, Langlade A, Osgood PF, Szyfelbein SK.

Morphine-3-glucuronide: Silent regulator of morphine actions.

Life Sci 1994;55:149-54.

CrossRef

36

Weinsanto I, Laux-Biehlmann A, Mouheiche J, Maduna T, Delalande F, Chavant V, et al.

Stable isotope-labelled morphine to study in vivo central and peripheral morphine glucuronidation and brain transport in tolerant mice.

Br J Pharmacol 2018;175:3844-56.

CrossRef

37

Smith MT, Watt JA, Cramond T.

Morphine-3- glucuronide - a potent antagonist of morphine analgesia.

Life Sci 1990;47:579-85.

CrossRef

38

Smith GD, Smith MT.

Morphine-3-glucuronide: evidence to support its putative role in the development of tolerance to the antinociceptive effects of morphine in the rat.

Pain 1995;62:51-60.

CrossRef

39

Yang Z, Li L, Hu H, Xu M, Gu J, Wang ZJ, et al.

Reverse of Acute and Chronic Morphine Tolerance by Lithocholic Acid via Down-Regulating UGT2B7.

Front Pharmacol 2016;7:404.

CrossRef

40

Blomqvist KJ, Viisanen H, Ahlström FHG, Jokinen V, Sidorova YA, Suleymanova I, et al.

Morphine-3- glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression.

Eur J Pharmacol 2020;875:173021.

CrossRef

41

Meng J, Yu H, Ma J, Wang J, Banerjee S, Charboneau R, et al.

Morphine Induces Bacterial Translocation in Mice by Compromising Intestinal Barrier Function in a TLR-Dependent Manner.

PLoS One 2013;8:e54040.

CrossRef

42

Bauman BD, Meng J, Zhang L, Louiselle A, Zheng E, Banerjee S, et al.

Enteric glialmediated enhancement of intestinal barrier integrity is compromised by morphine.

J Surg Res 2017;219:214-21.

CrossRef

43

Zhang R, Meng J, Lian Q, Chen X, Bauman B, Chu H, et al.

Prescription opioids are associated with higher mortality in patients diagnosed with sepsis: A retrospective cohort study using electronic health records.

PLoS One 2018;13:e0190362-e.

CrossRef

44

Eidson LN, Murphy AZ.

Inflammatory mediators of opioid tolerance: Implications for dependency and addiction.

Peptides 2019;115:51-8.

CrossRef

45

Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, et al.

Morphine activates neuroinflammation in a manner parallel to endotoxin.

Proceedings of the National Academy of Sciences 2012;109:6325-30.

CrossRef

46

Wen Y-R, Tan P-H, Cheng J-K, Liu Y-C, Ji R-R.

Microglia: A Promising Target for Treating Neuropathic and Postoperative Pain, and Morphine Tolerance.

J Formos Med Assoc 2011;110:487-94.

CrossRef

47

Stellwagen D, Beattie EC, Seo JY, Malenka RC.

Differential Regulation of AMPA Receptor and GABA Receptor Trafficking by Tumor Necrosis Factor-α.

The Journal of Neuroscience 2005;25:3219-28.

CrossRef

48

Shen C-H, Tsai R-Y, Wong C-S.

Role of neuroinflammation in morphine tolerance: Effect of tumor necrosis factor-α.

Acta Anaesthesiol Taiwan 2012;50:178-82

CrossRef

49

Berta T, Qadri Y, Tan PH, Ji RR.

Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain.

Expert Opin Ther Targets 2017;21:695-703.

CrossRef

50

Stein C, Machelska H.

Modulation of peripheral sensory neurons by the immune system: implications for pain therapy.

Pharmacol Rev 2011;63:860-81.

CrossRef

51

Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, et al.

Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia.

Nat Med 2017;23:164-73.

CrossRef

52

Chen Y, Geis C, Sommer C.

Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway.

J Neurosci 2008;28:5836-45.

CrossRef

53

Chen J, Gong ZH, Yan H, Qiao Z, Qin BY.

Neuroplastic alteration of TTX-resistant sodium channel with visceral pain and morphine-induced hyperalgesia.

J Pain Res 2012;5:491-502.

CrossRef

54

Ross GR, Gade AR, Dewey WL, Akbarali HI.

Opioid-induced hypernociception is associated with hyperexcitability and altered tetrodotoxin-resistant Na+ channel function of dorsal root ganglia.

Am J Physiol Cell Physiol 2012;302:C1152-61.

CrossRef

55

Mischel RA, Dewey WL, Akbarali HI.

Tolerance to Morphine-Induced Inhibition of TTX-R Sodium Channels in Dorsal Root Ganglia Neurons Is Modulated by Gut-Derived Mediators.

iScience 2018;2:193-209.

CrossRef

56

Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, et al.

Bacteria activate sensory neurons that modulate pain and inflammation.

Nature 2013;501:52-7.

CrossRef

57

Chiu IM, Pinho-Ribeiro FA, Woolf CJ.

Pain and infection: pathogen detection by nociceptors.

Pain 2016;157:1192-3.

CrossRef

58

Baral P, Udit S, Chiu IM.

Pain and immunity: implications for host defence.

Nat Rev Immunol 2019;19:433-47.

CrossRef

59

Pinho-Ribeiro FA, Baddal B, Haarsma R, O'Seaghdha M, Yang NJ, Blake KJ, et al.

Blocking Neuronal Signaling to Immune Cells Treats Streptococcal Invasive Infection.

Cell 2018;173:1083-97 e22.

CrossRef

60

Ianiro G, Tilg H, Gasbarrini A.

Antibiotics as deep modulators of gut microbiota: between good and evil.

Gut 2016;65:1906-15.

CrossRef

61

Willing BP, Russell SL, Finlay BB.

Shifting the balance: antibiotic effects on host-microbiota mutualism.

Nat Rev Microbiol 2011;9:233-43.

CrossRef

62

Ubeda C, Pamer EG.

Antibiotics, microbiota, and immune defense.

Trends Immunol 2012;33:459-66.

CrossRef

63

Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al.

Burden of Clostridium difficile Infection in the United States.

N Engl J Med 2015;372:825-34.

CrossRef

64

Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al.

The changing epidemiology of Clostridium difficile infections.

Clin Microbiol Rev 2010;23:529-49.

CrossRef

65

Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA.

Probiotics and prebiotics in intestinal health and disease: from biology to the clinic.

Nat Rev Gastroenterol Hepatol 2019;16:605-16.

CrossRef

66

Zhao K, Yu L, Wang X, He Y, Lu B.

Clostridium butyricum regulates visceral hypersensitivity of irritable bowel syndrome by inhibiting colonic mucous low grade inflammation through its action on NLRP6.

Acta Biochim Biophys Sin (Shanghai) 2018;50:216-23.

CrossRef

67

Mckernan DP, Fitzgerald P, Dinan TG, Cryan JF.

The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat.

Neurogastroenterol Motil 2010;22:1029-e268.

CrossRef

68

Zhang J, Song L, Wang Y, Liu C, Zhang L, Zhu S, et al.

Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats.

J Gastroenterol Hepatol 2019;34:1368-76.

69

Gupta S, Allen-Vercoe E, Petrof EO.

Fecal microbiota transplantation: in perspective.

Therap Adv Gastroenterol 2016;9:229-39.

CrossRef

70

Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, et al.

Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review.

Ann Intern Med 2015;162:630-8.

CrossRef

71

Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, et al.

Fecal microbiota transplantation broadening its application beyond intestinal disorders.

World J Gastroenterol 2015;21:102-11.

CrossRef